Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Vet Diagn Invest ; 35(3): 317-321, 2023 May.
Article in English | MEDLINE | ID: covidwho-20241750

ABSTRACT

Four turkeys from a commercial flock with acutely elevated mortality levels were submitted for postmortem examination and diagnostic workup. No clinical signs had been observed before death. On gross examination, hemorrhage and necrosis were present throughout the intestinal tracts, and the spleens were markedly enlarged and speckled. Microscopically, numerous, large basophilic-to-amphophilic intranuclear inclusion bodies were observed in mononuclear cells of the spleen and the lamina propria of the small intestine. In addition, there were lesions of diffuse villus blunting and necrosis of the small intestine, with large numbers of rod-shaped bacteria adhered to the epithelium and in the intestinal lumen. Hemorrhagic enteritis virus (HEV) infection was confirmed via PCR on the spleen. Clostridium perfringens was demonstrated in the small intestine by anaerobic culture and immunohistochemistry. The C. perfringens isolate was type F by PCR and, to our knowledge, necrotic enteritis in turkeys has not been described in association with C. perfringens type F infection.


Subject(s)
Clostridium Infections , Enteritis , Poultry Diseases , Animals , Enteritis/microbiology , Enteritis/veterinary , Poultry Diseases/microbiology , Intestines/microbiology , Clostridium perfringens , Necrosis/veterinary , Necrosis/pathology , Turkeys , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Chickens
2.
PLoS One ; 16(11): e0260451, 2021.
Article in English | MEDLINE | ID: covidwho-1528733

ABSTRACT

The mortality rates of COVID-19 vary widely across countries, but the underlying mechanisms remain unelucidated. We aimed at the elucidation of relationship between gut microbiota and the mortality rates of COVID-19 across countries. Raw sequencing data of 16S rRNA V3-V5 regions of gut microbiota in 953 healthy subjects in ten countries were obtained from the public database. We made a generalized linear model (GLM) to predict the COVID-19 mortality rates using gut microbiota. GLM revealed that low genus Collinsella predicted high COVID-19 mortality rates with a markedly low p-value. Unsupervised clustering of gut microbiota in 953 subjects yielded five enterotypes. The mortality rates were increased from enterotypes 1 to 5, whereas the abundances of Collinsella were decreased from enterotypes 1 to 5 except for enterotype 2. Collinsella produces ursodeoxycholate. Ursodeoxycholate was previously reported to inhibit binding of SARS-CoV-2 to angiotensin-converting enzyme 2; suppress pro-inflammatory cytokines like TNF-α, IL-1ß, IL-2, IL-4, and IL-6; have antioxidant and anti-apoptotic effects; and increase alveolar fluid clearance in acute respiratory distress syndrome. Ursodeoxycholate produced by Collinsella may prevent COVID-19 infection and ameliorate acute respiratory distress syndrome in COVID-19 by suppressing cytokine storm syndrome.


Subject(s)
Actinobacteria/physiology , COVID-19/prevention & control , Gastrointestinal Microbiome , Intestines/microbiology , SARS-CoV-2/physiology , Ursodeoxycholic Acid/metabolism , COVID-19/etiology , COVID-19/pathology , Humans
3.
Nutrients ; 13(8)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1430928

ABSTRACT

Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.


Subject(s)
Bacterial Physiological Phenomena , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Taste Perception , Animals , Antineoplastic Agents/therapeutic use , Bariatric Surgery , COVID-19/physiopathology , Diet , Dysbiosis/physiopathology , Feeding Behavior , Hormones/metabolism , Humans , Inflammatory Bowel Diseases/physiopathology , Neoplasms/drug therapy , Neoplasms/physiopathology , Receptors, G-Protein-Coupled/metabolism , Taste , Taste Buds/physiology , Toll-Like Receptors/metabolism
4.
J Invertebr Pathol ; 184: 107643, 2021 09.
Article in English | MEDLINE | ID: covidwho-1415572

ABSTRACT

In November 2019, an acute disease outbreak in Australian redclaw crayfish (Cherax quadricarinatus) occurred in a farm in Hubei, China, with a cumulative mortality rate of over 80%. One of the characteristic symptoms of the disease was blisters on the tail. This symptom is also common in diseased Procambarus clarkii every year in this country, but the causative agent has not been determined. This study analyzed the etiological characteristics of this disease. Bacterial isolation and identification combined with high-throughput sequencing analysis were conducted to obtain the microbiota characteristics in the hemolymph, hepatopancreas, and intestines. Results showed that this outbreak was caused by infection from Aeromonas hydrophila and Aeromonas veronii. The underlying cause was stress imposed on crayfish during transferring from outdoor pond to indoor pond because of temperature drops. Aeromonas infection caused remarkable changes in the structure of the microbial composition in the hemolymph, hepatopancreas, and intestines of the crayfish. The abundance of Aeromonas in the hemolymph of the sick crayfish was as high as 99.33%. In particular, KEGG metabolic pathway analysis showed that some antibiotic synthesis, enterobactin biosynthesis, and myo-inositol degradation pathways were abundant in healthy crayfish hemolymphs, which may be the mechanism of maintaining crayfish health. Conversely, inhibition of these pathways led to the disorder of microbiota structure, finally leading to the occurrence of diseases. To the knowledge of the authors, this study was the first to use high-throughput amplicon sequencing targeting the 16S rRNA gene to find the causative bacteria in aquatic animals. This protocol can provide more comprehensive and reliable evidence for pathogen identification, even if the pathogenic bacteria are anaerobes or other hard-to-culture bacteria.


Subject(s)
Aeromonas hydrophila/physiology , Aeromonas veronii/physiology , Astacoidea/microbiology , Animals , China , Hemolymph/microbiology , Hepatopancreas/microbiology , Intestines/microbiology , Tail/microbiology , Tail/pathology
5.
Int Immunol ; 33(12): 787-790, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1398105

ABSTRACT

Dysbiosis is alterations in the microbial composition compared with a healthy microbiota and often features a reduction in gut microbial diversity and a change in microbial taxa. Dysbiosis, especially in the gut, has also been proposed to play a crucial role in the pathogenesis of a wide variety of diseases, including inflammatory bowel disease, colorectal cancer, cardiovascular disease, obesity, diabetes and multiple sclerosis. A body of evidence has shown that intestinal polymeric immunoglobulin A (IgA) antibodies are important to regulate the gut microbiota as well as to exclude pathogenic bacteria or viral infection such as influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) at mucosal sites. Since the 1970s, trials for oral administration of therapeutic IgA or IgG have been performed mainly to treat infectious enteritis caused by pathogenic Escherichia coli or Clostridium difficile. However, few of them have been successfully developed for clinical application up to now. In addition to the protective function against intestinal pathogens, IgA is well known to modulate the gut commensal microbiota leading to symbiosis. Nevertheless, the development of therapeutic IgA drugs to treat dysbiosis is not progressing. In this review, the advantages of therapeutic IgA antibodies and the problems for their development will be discussed.


Subject(s)
Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Immunoglobulin A/therapeutic use , Immunomodulating Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Intestines/drug effects , Animals , Bacteria/immunology , Dysbiosis , Host-Pathogen Interactions , Humans , Immunoglobulin A/adverse effects , Immunomodulating Agents/adverse effects , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Species Specificity
6.
Front Immunol ; 12: 635471, 2021.
Article in English | MEDLINE | ID: covidwho-1133914

ABSTRACT

COVID-19 is an infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), and according to the World Health Organization (WHO), to date, SARS-CoV-2 has already infected more than 91.8 million people worldwide with 1,986,871 deaths. This virus affects mainly the respiratory system, but the gastrointestinal tract (GIT) is also a target, meanwhile SARS-CoV-2 was already detected in oesophagus, stomach, duodenum, rectum, and in fecal samples from COVID-19 patients. Prolonged GIT manifestations in COVID-19, mainly the diarrhea, were correlated with decreased richness and diversity of the gut microbiota, immune deregulation and delayed SARS-CoV-2 clearance. So, the bidirectional interactions between the respiratory mucosa and the gut microbiota, known as gut-lung axis, are supposed to be involved in the healthy or pathologic immune responses to SARS-CoV-2. In accordance, the intestinal dysbiosis is associated with increased mortality in other respiratory infections, due to an exacerbated inflammation and decreased regulatory or anti-inflammatory mechanisms in the lungs and in the gut, pointing to this important relationship between both mucosal compartments. Therefore, since the mucous membranes from the respiratory and gastrointestinal tracts are affected, in addition to dysbiosis and inflammation, it is plausible to assume that adjunctive therapies based on the modulation of the gut microbiota and re-establishment of eubiosis conditions could be an important therapeutic approach for constraining the harmful consequences of COVID-19. Then, in this review, we summarized studies showing the persistence of SARS-CoV-2 in the gastrointestinal system and the related digestive COVID-19 manifestations, in addition to the literature demonstrating nasopharyngeal, pulmonary and intestinal dysbiosis in COVID-19 patients. Lastly, we showed the potential beneficial role of probiotic administration in other respiratory infections, and discuss the possible role of probiotics as an adjunctive therapy in SARS-CoV-2 infection.


Subject(s)
COVID-19/microbiology , Intestines/microbiology , Lung/microbiology , SARS-CoV-2/physiology , COVID-19/therapy , Dysbiosis , Gastrointestinal Microbiome , Humans , Intestines/virology , Lung/virology , Probiotics
8.
Nutrition ; 79-80: 110996, 2020.
Article in English | MEDLINE | ID: covidwho-811888

ABSTRACT

In a few months, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become the main health problem worldwide. Epidemiologic studies revealed that populations have different vulnerabilities to SARS-CoV-2. Severe outcomes of the coronavirus disease 2019 (COVID-19) with an increased risk of death are observed in patients with metabolic syndrome, as well as diabetic and heart conditions (frail population). Excessive proinflammatory cytokine storm could be the main cause of increased vulnerability in this frail population. In patients with diabetes and/or heart disease, a low inflammatory state is often associated with gut dysbiosis. The increase amount of microbial metabolites (i.e., trimethylamine N-oxide and lipopolysaccharide), which generate an inflammatory microenvironment, is probably associated with an improved risk of severe illness from COVID-19. Nutritional interventions aimed at restoring the gut microbial balance could represent preventive strategies to protect the frail population from COVID-19. This narrative review presents the possible molecular mechanisms by which intestinal dysbiosis that enhances the inflammatory state could promote the spread of SARS-CoV-2 infection. Some nutritional strategies to counteract inflammation in frail patients are also analyzed.


Subject(s)
COVID-19/complications , Cytokines/metabolism , Dysbiosis/complications , Frail Elderly , Frailty , Inflammation/etiology , Intestines/microbiology , Aged , COVID-19/metabolism , COVID-19/microbiology , Humans , Inflammation/metabolism , Inflammation/microbiology , SARS-CoV-2 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL